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Spin-Glass Energy Landscape 
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We consider a nearest-neighbor-interaction + J  lsing spin glass in a square 
lattice. Inspired by natural evolution, we design a dynamic rule that includes 
selection, randomness, and muhibranch exploration. Following this rule, we 
succeed in walking along the space of states between local energy maxima and 
minima alternately. During the walk, we store various information about the spin 
states corresponding to these minima and maxima for later statistical analysis. 
In particular, we plot a histogram displaying how many times each minimum (or 
maximum) energy is visited as a function of the corresponding density value. 
Through finite-size scaling analysis, we conclude that a nonvanishing fraction of 
bonds remains unsatisfied (satisfied) at these energy minimum (maximum) 
states in the thermodynamic limit. This fraction measures the degree of 
unavoidable frustration of the system. Also in this limit, the width of these 
histograms vanishes, meaning that almost all metastable states occur at the 
same energy density value, with no dispersion. 
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In the E d w a r d s - A n d e r s o n  spin glass on  the square  lat t ice with in te rac t ions  

+ J  be tween  neares t  ne ighbors ,  each  site is s u r r o u n d e d  by zero  to four  

unsatisfied bonds  (J<(i>SiSj= + J f o r S i =  + 1 )  which con t r ibu te  to the 

total  energy.  W e  s imula te  here the energy  of  the whole  latt ice by o r ien t ing  

consecut ive ly  each spin such that  each spin flip lowers  the energy,  accord-  
ing to a d y n a m i c  rule def ined later. In this way, we get into a local,  not  

necessari ly the global ,  m i n i m u m  of the energy in the spin d i s t r ibu t ion  

space. After  s tor ing  the re levant  i n fo rma t ion  conce rn ing  this m i n i m u m  for 

later s tat is t ical  analysis ,  we search now for a local  energy m a x i m u m  fol low- 

ing the same  rule. N o w ,  each spin flip increases the energy.  We  then s tore  
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also the information concerning this maximum, and restart the process, 
again searching another minimum, and so on, performing a walk on the 
space of states. 

Each step in this walk corresponds to a single mutation, only one spin 
being flipped at a time. We also introduce randomness in the dynamic 
process. We scan the lattice site by site. If a spin flip on the current site will 
lower the energy, then we perform this mutation with only 50% proba- 
bility when looking for local minima. The same probability is adopted for 
the search for local maxima. In this way, our system evolves through 
random mutations, under a nonrandom selection rule (the energy lowering 
or increasing), according to evolution theory, t ~  The other fundamental 
feature of evolution, the multibranched search, is also taken into account by 
including an infinitesimal magnetic field in order to deal with free spins. 
First this field points up. So if the current site is surrounded by just two 
unsatisfied bonds, its spin will be forced to point up after the 50% prob- 
ability tossing. We scan the whole lattice many times until convergence, 
with no more spins to be flipped. Then we reverse the field to down orien- 
tation, and restart the process until a new convergence, always decreasing 
(increasing) the energy when looking for a minimum (maximum). Then, 
the field is reversed to up again, and so on. The process stops when the 
energy cannot be further decreased (increased) by further field reversing. 

The repeated reversing-field procedure was introduced before c5~ in 
looking for the ground states of the diluted Ising antiferromagnet in a 
uniform magnetic field. The advantage of its inclusion in our problem can 
be understood as follows. Suppose we adopted only the naive dynamic rule 
of flipping all spins with three or four surrounding unsatisfied bonds until 
reaching a locked state So. This state is certainly a "local energy minimum" 
in the sense that its energy is smaller than or at most equal to each one of 
its N neighboring states. Suppose So has just n spins with two surrounding 
unsatisfied bonds. Then there are just n neighboring states with the same 
energy. Unlike So, however, it is not true that these n states are also 
necessarily "local energy minima." Some of them may have neighboring 
states (second neighbors of So) corresponding to equal or even lower 
energies. The same may occur also to some of the neighbors of these 
neighbors (third neighbors of So), and so on. In this case, S~ is not a truly 
metastabte state, i.e., it is not a state from which any further minimization 
can be achieved only by large jumps through energy barriers. On the 
contrary, starting from So, one can explore this multibranched network of 
possibilities, looking for deeper energy valleys along the space of states, 
always through single-spin mutations and neoer increasing the energy. 
Our repeated reversing-field procedure is a way to do just that. Its power 
is illustrated by Fig. 1, showing the potential number of spins to be flipped 
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(before the 50% tossing) as a function of time t (number of whole lattice 
updates). The successive peaks on the plots correspond to successive field 
reversing. The rounded behavior is due to averaging, taking into account 
many maximum-minimum trajectories. For only one such a trajectory, the 
plots would touch the horizontal axis just before each field reversing, 
growing again just after, like a saw. As one can see by comparing the plots, 
the larger the lattice, the more efficient is the reversing-field procedure. 

We normalize the energy per site into the unit interval. Thus, o ~ = 0 
means no unsatisfied bonds, whereas g = 1 corresponds to all bonds being 
unsatisfied. We will call state the spin distribution which is the dynamical 
variable. On the other hand, we will call configuration the ___J bond 
distribution on the lattice, which is quenched. A typical histogram of 
consists of two sharp peaks, one for the visited energy minima and the 
other for maxima. The interesting features about such plots are their widths 
decreasing for increasing system sizes, and also the positions of their 
averaged values (~max) ((~ increasing (decreasing) for increasing 
system sizes. Two questions can be formulated. 

1. Do the widths of these plots vanish in the thermodynamic limit? 
If so, this means that almost all metastable states occur at the 
same energy density, with no dispersion. 

2. Do (~min) and (r approach 0 and 1, respectively, in the 
thermodynamic limit? This question can be reformulated as 
follows. Is the degree of unavoidable frustration a null measure set, 
with dimension smaller than the lattice dimensionality? 

The main purpose of the present work is to answer these questions. 
A histogram for eight distinct configurations with six distinct walks 

each is presented in Fig. 2, corresponding to 720,000 minima (and maxima) 
for a 16x 16 lattice. An interesting effect appears: the histogram seems 
to be composed of two distinct ones, with shifted averaged values. The 
physical reason for this feature is the existence of two distinct classes of 
configurations, even or odd. The value of ~ gives simply the density of 
unsatisfied bonds on the lattice, i.e., the number ~'?Z of unsatisfied bonds 
divided by the total number 2N of bonds. As each flipped spin changes this 
number q / b y  0, + 2, or + 4, it cannot be even for some state and odd for 
another one corresponding to the same configuration. So each configura- 
tion is categorized into two distinct classes, even or odd, according to the 
parity of the number of unsatisfied bonds it can hold. We considered four 
even and four odd configurations in our simulations leading to Fig. 2, 
showing a higher degree of frustration for the odd ones. On the other hand, 
for the 32 • 32 lattice (not shown), we obtain the opposite trend, taking 
also four even and four odd configurations. This behavior indicates that 
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Fig. 2. 16 x 16 lattice histogram of energy minima (left) and maxima (right) for eight distinct 
configurations and six distinct walks each, corresponding to 720,000 minima or maxima. 
There are four even and four odd configurations (see text), leading to the two-peak 
appearence of the histogram. The lines are guides to the eye. 

only-one-configuration histograms depend upon the particular configura- 
tion simulated. Thus, the measurement of averaged energies or widths 
may require many distinct random configurations. We profit from the 
comparison between results for even and odd configurations in order to 
control the statistical quality of all our results. 

The whole process would be unfeasible (at least on our personal 
computers) by using canonical programming techniques. Instead, we 
adopted a multispin strategy, t6) 

Table I shows the averaged values and peak widths of our histograms, 
from simulations on four different sizes of lattices, taking for each one an 
adequate number of distinct configurations, according to the desired 
numerical accuracy. The final three columns correspond to averages over 
only even, only odd, and both even and odd configurations, respectively. 
The coincidence of the most representative digits gives us confidence in 
them, according to our early discussion concerning Fig. 2. Thus, one can 
conceive that these simulated histograms must be equal (within this degree 
of numerical accuracy) to the exact histograms one could in principle 
determine by taking all metastable states from all possible configurations, 
for each lattice size. This may be true with regard to the horizontal scales 
(energy axis) of the histograms, but not for the vertical scales (number of 
metastable states).-A third question can be formulated, besides the other 
two already quoted. 

3. What is the behavior of the total number of metastable states 
(averaged over configurations) as a function of the lattice size? 

822/74,5-6-21 
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Averaged Values ( ~ )  and Widths (AS)  of Histograms for 
8 x 8 ,  16x16 ,  32x32 ,  and 6 4 x 6 4  Lattices ~ 

Only even Only odd Even and odd 

8 • 8 (g',,in) 0.17888 0.17887 0.17888 
< g'm~x ) 0.82119 0.82110 0.82114 
( dgm~, ) 0.02032 0.02044 0.02038 
< z] ~'ma x > 0.02033 0.02044 0.02038 

16 x 16 <~min > 0.17435 0.17445 0.17440 
( ~,,a~ ) 0.82563 0.82556 0.82560 
( Ag~,  ) 0.00991 0.00992 0.00992 
( -4gma ~ ) 0.00993 0.00991 0.00992 

32 • 32 (gmi,) 0.16994 0.17013 0.17004 
( ~r ) 0.83007 0.82989 0.82998 
<Agm~, ) 0.00489 0.00490 0.00489 
( AStor,,, ) 0.00490 0.00489 0.00489 

64 • 64 (~mln > 0.16643 0.16637 0.16640 
( ~ma~ > 0.83358 0.83363 0.83360 
( AStor, ) 0.00252 0.00248 0.00250 
< A~ma x > 0.00252 0.00248 0.00250 

o We take just one walk corresponding to 400 minima and 400 maxima for each configuration. 
The number of configurations adopted for each lattice size is, respectively, 10,000, 6000, 4000 
and 2648 (approximately half even and half odd), corresponding to 4,000,000, 2,400,000, 
1,600,000 and 1,059,200 minima or maxima, respectively. Averages are performed over only 
even, only odd, and both even and odd configurations, respectively. 
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Fig. 3. Data-collapsing plots of histograms for 16 • 16, 32 x 32, and 64 • 64 lattices (same 
data corresponding to Table I), according to the scaling equation (l). Data for the tiny 8 • 8 
lattice are also included. 
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Unfortunately, our simulations do not add much information (if any) 
about this point. See refs. 7 and 8. 

Let us return to questions 1 and 2. Figure 3 shows data-collapsing 
plots obtained by fitting our simulated histograms for 16 x 16, 32 x 32, and 
64 x 64 lattices to the form of a generalized homogeneous function 19~ 

H ( l " ( g - g o ~ ) ,  I -~L)  = I - * H ( ( g - g o o ) ,  L) (1) 

supposed to be valid for arbitrary values of l, and for large enough lattice 
sizes L. Here, a, g~,  and �9 are parameters to be determined. They are 
related to questions 1, 2, and 3, respectively. As discussed above, we are 
not able to compare the vertical scales of distinct simulated histograms 
obtained from different lattice sizes. So we impose �9 = 0 by normalizing 
our histograms to the same maximum height. The actual value of �9 would 
be related to the true maximum height H m a  x ~ L ~ of the exact histograms, 
and remains an open question. In Fig. 3, we used a =  1, and found 
o~ =0.1633 for energy minima histograms ( 1 - 8 ~  =0.8367 for maxima). 
Considering the dimension D = 2  of our systems, and according to 
a = 1 = D/2, the width of these histograms vanishes as 1/x//-N in the ther- 
modynamic limit N ~ m. This behavior is characteristic of systems formed 
by N uncorrelated units, and may be a consequence of the lack of spin- 
glass long-range order in that dimension. In Fig. 3, we include also data for 
the tiny 8 x 8 lattice not collapsing very well onto the other three curves. 
This means that our sequence of sizes L =  16, 32, and 64 is not large 
enough to give us complete confidence on the last digits estimated for ~ .  

As a last remark, we do not claim that our minimum energies 
correspond to ground states. According to our evolutionary dynamic rule, 
we can only guarantee that they are metastable states in the sense exten- 
sively discussed above. One can devise two possible scenarios. First, the 
true ground states have a smaller energy density than our o~. In this case 
they are hidden in our simulations, being thus a null measure set compared 
to our metastable states (their number scaling as L ", where ct < ~). Second, 
the energy density of the true ground states coincides with our go~. In this 
case, our "metastable" states are actually the true ground states. Consider- 
ing what are supposed to be the true ground states, Monte Carlo estimates 
give ~ 20.15 (see, for instance, ref. 10), whereas theoretical topological 
arguments II~l give a lower bound of ~_. =0.125, to be compared with our 
~_ = 0.1633. Also, non-vanishing values for the entropy per site are reported, 
seeming to rule out the first scenario. For a recent discussion about this 
subject, see ref. 12. 

In conclusion, we have studied the energy landscape of nearest- 
neighbor _ J square lattice Ising spin glasses through computer simulation. 
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In the the rmodynamic  limit, we measured a nonvanishing degree of 
unavoidable  frustrat ion,  cor responding  to a precise (vanishing dispers ion)  
finite fraction of unsatisfied bonds.  The search for min imum energy values 
is performed through single r andom muta t ions  (single spin flips) repeated 
sequentially,  following a non random selective evolu t ionary  process. Also, 
mul t ibranched  possibili t ies are explored in this search, through the 
inclusion of  an infinitesimal magnet ic  field that  is reversed iteratively. This 
mul t ibranch explora t ion  allows one to follow channels of nonstr ict  local 
min imum energies across the space of states until  reaching true metas table  
states from which the energy cannot  be minimized by single-step mutat ions.  
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